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In-Context Learning as Bayesian
Inference
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TABPFN: A TRANSFORMER THAT SOLVES SMALL
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Done once, offline Done per real-world dataset, online Q( |£B 4, D ) Q( |$5 ) D )
Sample synthetic datasets D; Real-world training dataset D, q; ? ?
from prior: D; ~ p(D) and test point x4

v

Train TabPEN gy on synthetia
datasets { D1, ..., D,} )

v § @

Obtain qo (ytest Imtesta Dreal)
b ' with a single forward pass (mla yl)(m% y2)($3, yS) L4 L5

(a) Prior-fitting and inference (b) Architecture and attention mechanism
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IN-CONTEXT REINFORCEMENT LEARNING

WITH ALGORITHM DISTILLATION
DeepMind

First, we collect a dataset of learning histories from an RL algorithm trained on
diverse tasks.

This can be any RL algorithm - it can be doing gradient updates, replay, planning, can
be on or off-policy, model-free or model- based.

Data Generation

Task 1
: RL algorithm
/ learning histories

L (n) _ :
Task 1 hy’ = (00,a0,70,01,81,T1,...,0T,4T,TT)n

ﬂ

____________________________________

learning progress



IN-CONTEXT REINFORCEMENT LEARNING

WITH ALGORITHM DISTILLATION

DeepMind

Next, train a transformer to predict actions from the entire learning history preceding
the current timestep.

Policy improves throughout RL training, to predict actions accurately, transformer

needs to

Model Training
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Causal Transformer
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Predict actions using
across-episodic contexts
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An Explanation of In-context Learning as Implicit
Bayesian Inference
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Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer «—— example #1 Few-shot

In addition to the task description, the model sees a few
gradient update examples of the task. No gradient updates are performed.

' peppermint => menthe poivrée <« example #2 Translate English to French: <« task description
sea otter => loutre de mer «—— examples
gradient update
peppermint => menthe poivrée ¥
XX plush girafe => girafe peluche -
\ %
cheese => «—— prompt

1 plush giraffe => girafe peluche < example #N

gradient update

1 cheese => «—— prompt

Brown et al. Language Models are Few-Shot Learners. 2020



1. Pretraining documents
are conditioned on a
latent concept (e.g.,
biographical text)

Albert Einstein was a German theoretical physicist, widely
acknowledged to be one of the greatest physicists of all time.
Einstein is best known for developing the theory of relativity, but
he also ....

Concept
(e.g., wiki bio)

Input (x) Output (y) Delimiter

2. Create independent Albert Einstein was German \n
examples from a shared /

concept. If we focus on full
names, wiki bios tend to
relate them to nationalities.

Concept

(e.g., wiki bio) /) — Mahatma Gandhi was Indian \n

, : ..brilliant?
\ Marie Curie was ?

...Polish?

3. Concatenate examples into a prompt and predict next word(s). Language model (LM) implicitly
infers the shared concept across examples despite the unnatural concatenation

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curie was  =——>» —p  Polish



Pretraining distribution. In our framework, a latent concept § from a family of concepts © defines
a distribution over observed tokens o from a vocabulary O. To generate a document, we first sample
a concept from a prior p(f) and then sample the document given the concept. Each pretraining
document is a length 7" sequence:

Mo ]9 plon-..,orlo)p(6)ds @)

Learning via SGD during unsupervised pre-training E

= = 3
i

5+ 8 = 13 O = O thanks => merci O
a gaot => goat Q a
- - | -
== =l =

7+2=29 ;2 sakne => snake ;E hello => bonjour Q
= = —
® D ®

1T + 0 =1 b brid => bird o mint => menthe Q
- — w—
E. : E.
- - | -

3 4 = 0 fsih => fish e wall => mur Q

5+ 9 =14 dcuk => duck otter => loutre

9O+ 8 =17 cmihp => chimp bread => pain

sequence #1 sequence #2 sequence #3



p(output|prompt) = / p(output|concept, prompt)p(concept|prompt)d(concept).

concept



Theorem 1. Assume the assumptions in Section 2.1 hold. If Condition 1 holds, then as n — oo the predic-
tion according to the pretraining distribution is

arg max p(ylsna xtest) —r argmax pprompt(y‘xtest)- (15)
Yy Y

Thus, the in-context predictor f,, achieves the optimal 0-1 risk: lim,,_,oc Lo-1(frn) = inf¢ Lo-1(f).

delim delim delim
[Snaxtest] — [xlaylao y L2,Y2,0 yeooyLnyYn,O 733test] et pprompb



Properties (s)

Newline First name Last name Nationality Linking verb etc.
;N : :
. - n Albert Einstein German was
Memorymatrix M = %~ \ -
= \n Mahatma  Gandhi Indian was
v .
®
®
Empirical HMM model (Prompt distribution)
Transition matrix for properties (s)
g = 2 3 5 4 il 2 3 5 4 1
Hidden
states
vV = il 1 i 1 il 2 2 2 2 2

§ 1 3 L b3

Prompt  M|v,,s;] = Albert Einsteinwas  German \n  Mahatma Gandhiwas Indian  \n
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Figure 3: In-context accuracy (95% intervals) of Transformers (left) and LSTMs (right) on the GINC
dataset. Accuracy increases with number of examples n and length of each example k.
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Questions

e No free lunch?



