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Why dowe care about spherical Gaussian processes?

ReLU(w>x+ b) = ReLU
( [w

1

]> [
x
b

] )
= ReLU

(
‖w̃‖ ‖x̃‖ cos(θ)

)
= ‖w̃‖ ‖x̃‖ReLU

(
cos(θ)

)
,

where w̃ =

[
w
1

]
, x̃ =

[
x
b

]
, and θ is the angle between w̃ and x̃.
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ReLU on sphere and in data plane in 2D
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ReLU on sphere and in data plane in 3D
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Model on the sphere (circle) and linearly project
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Mercer Decomposition of Zonal Kernels

κ(cos(θ)) = sin(θ) + (π− θ) sin(θ)

• Spherical counterpart of stationary kernels: k(x, x ′) = κ(x>x ′).

• Mercer’s decomposition: κ(x>x ′) =
∑∞

n=0

∑Nn

k=1 λnφn,k(x)φn,k(x
′).

6



Mercer Decomposition of Zonal Kernels

κ(cos(θ)) = sin(θ) + (π− θ) sin(θ)

• Spherical counterpart of stationary kernels: k(x, x ′) = κ(x>x ′).

• Mercer’s decomposition: κ(x>x ′) =
∑∞

n=0

∑Nn

k=1 λnφn,k(x)φn,k(x
′).

6



Spherical Harmonics
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Reproducing Kernel Hilbert Space (RKHS)

Define the RKHS through the Mercer decomposition

Hk =

{
f(·) =

∑
n,k

f̂n,kφn,k(·) : ‖f‖Hk
< ∞}

with inner-product:

〈g(·), h(·)〉Hk
=

∑
n,k

ĝn,kĥn,k

λn

,

such that (reproducing property):

〈g(·), k(x, ·)〉Hk
= g(x).
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Sparse GPs with interdomain Inducing Variables
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f(·) | f(Z) = u (1)

Linear transformation of the GP

u = f(z) → u =

∫
f(x)g(x)dx
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Spherical harmonics Inducing Features

Approximate posterior constructed out of inducing features

um = 〈f, φm〉Hk

Inducing points

um = f(zm)

Cov(um, f(·)) = k(·, zm)

Cov(um, um ′) = k(zm, zm ′)

Inducing Features

um = 〈f, φm〉Hk

Cov(um, f(·)) = φm(·)

Cov(um, um ′) = λmδmm ′
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Approximate Posterior

qf = GP
(∑

αmk(zm, ·); k(·, ·) − k·uK−1
uu(Kuu − Σ)K−1

uuku·

)

⇓
qf = GP

(∑
αmφm(·); k(·, · ′) −Φ>(·)(Λ− Σ)Φ(· ′)

)
,
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Experiment

Airline dataset: 6,000,000 datapoints regression task fitted in 40 seconds on a
single ‘cheap’ GTX 1070 GPU
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Optimal inducing features

VFF VISH
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Basis functions
Traditionally, the inducing variables are defined as u = f(z), which leads to
the basis functions:

kuf = Cov(f(z), f(x)) = k(z, x) (2)
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One step further

From spherical harmonic basis function to “Activated” features
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gm(x) = ‖x‖ ‖wm‖ReLU
(

w>
mx

‖wm‖ ‖x‖

)

Before:

um = 〈f, φm〉Hk

Kuf = Cov(um, f(·)) = φm(·)

Now:

um = 〈f, gm〉Hk

Kuf = Cov(um, f(·)) = gm(·)
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Caveat

We require inducing variables
u = 〈f(·), g(·)〉Hk

with finite variance

Var(u) = ‖g(·)‖Hk
=

∑
i

ĝ2
i

λi

< ∞
where ĝi are the coefficients of g
when projected on the kernel eigen
function basis of the kernel. This
series may diverge!
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Deep Gaussian Processes

• GP inducing variables for which
the basis functions behave like
NN activations.

• For such construction,
propagating through the mean of
each GP layer is exactly a
forward pass in a NN!

• Benefits:
1. Initialise a DGP with a NN

point estimate
2. Add uncertainty to a DNN
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Toy experiment: 3 layer DGP
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Take-AwayMessages

1. Interdomain Gaussian processes are a great framework for building
powerful models.

2. Gaussian processes <3 Spherical Harmonics: leads to diagonal
covariance matrices!

3. ReLU-like basis functions need to be handled with care, but give rise to
approximate Deep GPs for which propagating the mean is equivalent to
a DNN.
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Thank you for your attention
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