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Hi, I’m Vincent 👋
Finished my Bachelor’s and Masters at Ghent University in 2017
Moved to Cambridge (UK) straight after to work for a startup PROWLER.io
Started my PhD at Cambridge University in 2020
Senior ML researcher at Secondmind.ai
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Outline
The talk will consist of two parts:

1. A tutorially overview of energy-based models, and how this has led to
diffusion models.

2. Diffusion models for stochastic processes.

Credits to Yang Song, Michael Hutchinson, and Arnaud Doucet for some of the images and slide material.
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Generative modelling
Given: dataset {xi}

n
i=1

Goal: fit a model pθ(x) to the data distribution

Illustration generative modelling (from: openai.com)
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Energy-based models
A density defined through an energy function Uθ : Rd → R:

pθ(x) =
e−Uθ(x)

Zθ

,

We can fit this energy function by maximising the log likelihood:

θ∗ = max
θ

N

∑
i=1

log pθ(xi)

 ⚠  Intractable normalizing constant: Zθ = ∫
Rd e−Uθ(x)dx.
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Score function
Modelling the density through the score function

∇x log p(x) ≈ sθ(x).

The score does not depend on the normalizing constant. Let p(x) =
q(x)

Z

∇x log
q(x)

Z
= ∇x log q(x) −

=0

∇x log Z


p(x)
∇x log p(x) 7 / 37



Langevin dynamics
Theorem 1 The density of xt as t → ∞ for the SDE

dxt = ∇ log p(xt)dt + √2dWt

is given by p(x), where Wt is standard Brownian motion.
Euler-Marayuma
First-order discretization of continuous SDE. For a small stepsize γ we can

xk+1 = xk + γ∇ log p(xk) + √2zk, zk ∼ N (0, γI)
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Fisher divergence
We can train score-based models by minimizing the Fisher divergence between
the model and the data distributions

Ep(x)[∥∇x log p(x)  − sθ(x)∥2].

Infeasible because it requires access to the unknown data score.
Score-matching: Hyvärinen ( ), Vincent ( ), Song et al. ( )2005 2011 2019
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Using Langevin dynamics to sample from a mixture of two Gaussians. (from: Yang Song)
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Naive score-based generative modeling

Score-based generative modeling with score matching + Langevin dynamics. (from: Yang Song)
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Pitfalls

Score is badly estimated in low-density areas

Langevin dynamics has slow mixing rates
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Multiple noise levels

Gaussian noise to perturb the data distribution

Song and Ermon ( ) suggest to perturb data points such that they populate
low data density regimes.

2019
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Markov chain

Consider a Markov chain x0 ∼ p0 and xk+1 ∼ pk+1|k(⋅|xk), which gives
Forward

p(x0:K) = p0(x0)
K−1

∏
k=0

pk+1|k(xk+1|xk)

Backward

p(x0:K) = pK(xK)
0

∏
k=K−1

pk|k+1(xk|xk+1)

where pk|k+1(xk|xk+1) is unknown but can be obtained with Bayes’ rule.
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Generative modelling with multiple noise levels

Let

p0 = pdata

Choose

pk+1|k(xk+1|xk) = N (xk+1|αxk, (1 − α2)I)

such that for large enough K we have

pK ≈ pref = N (0, I).
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Backward transition
1. For sampling we need the reverse kernel pk|k+1, given through Bayes’ rule

pk|k+1(xk|xk+1) =
pk+1|k(xk+1|xk)pk(xk)

pk+1(xk+1)

which is unfortunately intractable!

2. Using a Taylor approximation one can show

pk|k+1(xk|xk+1) ≈ N(xk|(2 − α)xk+1 + (1 − α2) , (1 − α2)I)∇ log pk+1(xk+1)

3. Approximate score with neural net sθ(xk+1, k + 1) ≈ ∇ log pk+1(xk+1).

4. Sampling start with xK ∼ pref(xK) and then uses the reverse kernel

xk = (2 − α)xk+1 + (1 − α2)sθ(xk+1, k + 1) + (1 − α2)ϵ ϵ ∼ N (0, I). 16 / 37



Score
The score ∇ log pk(xk) is required but analytically unavailable. However, using

pk(xk) = ∫ p(x0)pk|0(xk|x0)dx0

it follows

∇ log pk(xk) = Ex0∼p(⋅|xk)[∇ log pk|0(xk|x0)|xk]

A conditional expectation can be written as a regression problem (by
definition), which gives

∇ log pk(xk) = argminθ Ex0,xk
[∥sθ(xk) − ∇xk

log pk|0(xk|x0)∥2]
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Annealed Langevin Dynamics
≈ Noise Conditional Score Network (NCSN) by Song and Ermon ( )
≈ Denoising Diffusion Probabilistic Models (DDPM) by Ho, Jain, and
Abbeel ( )

2019

2020

Celeb A CIFAR-10
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Perturbing data with an SDE in continuous time
From a (large) discrete set of noise scales → continuous number.

Forward SDE runs

The SDE can be written as

dxt = f(xt, t)dt + g(t)dWt, x0 ∼ pdata

where f and g are the drift and diffusion terms, and Wt is standard Brownian
motion. Heuristically, you can think of it as “dW/dt ∼ N (0, dt)”.
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Reversing the SDE for sample generation

Reverse process (Nelson’s duality)

dxt = [f(xt, t) − g2(t)∇x log pt(x)]dt + g(t)dW̄t, xT ∼ pT

where dt represents a negative infinitesimal time step as t = T → 0.

Generating data following the reverse SDE
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Generative modelling by approximating the reverse process
Exact reverse process

dxt = [f(xt, t) − g2(t) ]dt + g(t)dW̄t, xT ∼

Generative model

dxt = [f(xt, t) − g2(t) ]dt + g(t)dW̄t, xT ∼

∇x log pt(x) pT

sθ∗(xt, t) pref

The score is learned using score-matching, similar to before

θ∗ = argminθ[Ex0,xt
∥sθ(xt, t) − ∇xt

log pt|0(xt|x0)∥2]

For OU processes pt|0(xt|x0) can analytically be computed using the Fokker-
Planck equations and leads to simple expression of the form

pt|0(xt|x0) = N (xt; e−t
x0, (1 − e−2t)I)
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Continuous-time denoising — Song et al. ( )

Forward-Reverse

2021

Continuous-time formulation generalizes the discrete approaches.

Log-likelihood computations log pθ(x0) (not shown here).
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Neural Diffusion Processes
VD, Alan Saul, Zoubin Ghahramani and Fergus Simpson, Arxiv ( )2022
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Motivation
Diffusion models have been used on different data modalities:
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Diffusion models for ‘functions’

Distribution over functions
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Perturbing function-values using OU process
Let X ∈ R

n×d and y(X) ∈ R
N , we define the forward noising process as

dyt(X) = −
1

2
yt(X)dt + dWt

Our random variable {yt}
T
t=0 is now a function which depends on inputs X.

Using Fokker-Planck, we can compute the marginal density in closed-form for
for this process

pt|0(yt(X)|y0(X)) = N(e− 1
2 y0(X), (1 − e−t)I)
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Forward process

Forward NDP process
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Reverse process
Generative model

dxt = [f(xt, t) − g2(t) ]dt + g(t)dW̄t, xT ∼sθ∗(xt, t) pref

28 / 37



Learning the score
The minima of the Fisher divergence can be shown to be equivalent to

θ∗ = argminθ Ey0,yt
[∥sθ(yt, X, t) − ∇yt

log pt|0(yt|y0)∥2]

Encode properties of stochastic processes in score network sθ:

dimensionality invariance
exchangeability

Score network architecture
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Predictions
We use an algorithm similar to the one used for image inpainting by Lugmayr
et al. ( ).
This allows us to condition samples on observed data:

2022

Neural Diffusion Process

Gaussian Processes
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Experiment: Capturing non-Gaussian posteriors
Consider the following distribution over functions. Let a ∼ U[−1, 1] then

f(x) = 0.0 if x < a, else 1.0
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Experiment: Image Regression
Learning complex covariances from data.
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Thank you for your attention.
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