Geometric Neural Diffusion Processes

Vincent Dutordoir September 14, 2023

- 2015. Bachelor's & Master's in Engineering at Ghent University (Belgium)
- 2017. Research Scientist at Secondmind.io (formerly PROWLER.io)
- 2020. PhD student at University of Cambridge with Prof Zoubin Ghahramani
- 2022. Research Internship at DeepMind
- 2023. Submitting thesis on Generative Modelling in Function Space

- 1. An introduction to generative modelling
- 2. Background on continuous diffusion models
- 3. Diffusion models on functions
- 4. Incorporating geometry and invariances
- 5. Conditional Sampling

Papers of Reference and Collaborators

Neural Diffusion Processes, ICML 2023.

Vincent Dutordoir

Alan Saul

Zoubin Ghahramani

Fergus Simpson

Geometric Neural Diffusion Processes. Under submission.

Émile Mathieu*

Vincent Dutordoir*

Michael Hutchinson^{*}

Valentin De Bortoli

Yee Whye Teh

Richard E. Turner

Deep generative modelling

Motivating examples

Molecular conformation generation (Xu et al., 2022) Motif-Scaffolding (Trippe et al., 2022)

Motivating examples (Cont'd)

Probabilistic near future (nowcasting) prediction of precipitation (Ravuri et al., 2021)

Context Past 20mins Deep Generative Model of Rain Nowcast Next 90mins Given $x_1, x_2, \ldots, x_n \sim p(x)$

How to model the (unknown) density p(x) and sample from it?

Deep generative models

Figure 1: (Albergo and Vanden-Eijnden, 2022)

Continuous diffusion models

Principles of continuous diffusion models

Figure 2: (Song et al., 2021)

- ▶ Idea: Destruct data with *continuous* series of noise.
- ▶ Do this by constructing an **SDE** forward noising process $(\mathbf{Y}_t)_{t \in [0,T]}$.
- Have this noising converge to a known distribution.
- ▶ Invert this SDE noising process to get $(\bar{\mathbf{Y}}_t)_{t \in [0,T]} = (\mathbf{Y}_{T-t})_{t \in [0,T]}$.

The Forward process progressively perturbs the data following a SDE

$$d\mathbf{Y}_t = b(t, \mathbf{Y}_t) dt + \sigma(t, \mathbf{Y}_t) d\mathbf{B}_t$$
(1)

characterised by a drift b and diffusion σ . $d\mathbf{B}_t$ is Brownian motion (think of it conceptually as $d\mathbf{B}_t/dt \sim \mathcal{N}(0, dt)$.

The Forward process progressively perturbs the data following a SDE

$$d\mathbf{Y}_t = b(t, \mathbf{Y}_t) dt + \sigma(t, \mathbf{Y}_t) d\mathbf{B}_t$$
(1)

characterised by a drift b and diffusion σ . $d\mathbf{B}_t$ is Brownian motion (think of it conceptually as $d\mathbf{B}_t/dt \sim \mathcal{N}(0, dt)$.

Euler–Maruyama discretisation with time step $\Delta_T \ll 1$ yields a Markov kernel:

$$p(\mathbf{Y}_{n+1}|\mathbf{Y}_n) \approx \mathcal{N}(\mathbf{Y}_{n+1}|\mathbf{Y}_n + \Delta_T \mathbf{b}(t_n, \mathbf{Y}_n), \Delta_T \mathbf{\sigma}^2(t_n, \mathbf{Y}_n) \mathbf{I}).$$

where $t_n = n\Delta T$.

Example: Ornstein–Uhlenbeck process on \mathbb{R}^2

Let the data $\mathbf{Y}_0 \in \mathbb{R}^2$ be distributed according to a *known* 2D Gaussian with a correlation coefficient $\rho \approx 1$.

We specify the drift to be linear and the diffusion coefficient to be constant

$$\mathrm{d}\mathbf{Y}_t = -\mathbf{Y}_t \,\mathrm{d}t + \sqrt{2} \,\mathrm{d}\mathbf{B}_t. \tag{2}$$

Figure 3: Forward OU process on 2D data.

Theorem 1: (Cattiaux et al., 2021; Haussmann and Pardoux, 1986)

The time-reversed process $(\bar{\mathbf{Y}}_t)_{t\geq 0} = (\mathbf{Y}_{T-t})_{t\in[0,T]}$, with forward process $d\mathbf{Y}_t = b(t, \mathbf{Y}_t) dt + \sigma(t) d\mathbf{B}_t$, also satisfies an SDE given by

$$\mathrm{d}\bar{\mathbf{Y}}_t = \left[-b(T-t,\bar{\mathbf{Y}}_t) + \sigma(T-t)\right]^2 \nabla \log p_{T-t}(\bar{\mathbf{Y}}_t) \,\mathrm{d}t + \sigma(T-t) \,\mathrm{d}\mathbf{B}_t,$$

assuming $\bar{\mathbf{Y}}_0$ is distributed the same as \mathbf{Y}_T .

Theorem 2: (Cattiaux et al., 2021; Haussmann and Pardoux, 1986)

The time-reversed process $(\bar{\mathbf{Y}}_t)_{t\geq 0} = (\mathbf{Y}_{T-t})_{t\in[0,T]}$, with forward process $d\mathbf{Y}_t = b(t, \mathbf{Y}_t) dt + \sigma(t) d\mathbf{B}_t$, also satisfies an SDE given by

$$\mathrm{d}\bar{\mathbf{Y}}_t = \left[-b(T-t,\bar{\mathbf{Y}}_t) + \sigma(T-t)\right]^2 \nabla \log p_{T-t}(\bar{\mathbf{Y}}_t) \, \mathrm{d}t + \sigma(T-t) \, \mathrm{d}\mathbf{B}_t,$$

assuming $\bar{\mathbf{Y}}_0$ is distributed the same as \mathbf{Y}_T .

Challenges:

- 1. We do not have access to $\mathbf{Y}_T \Rightarrow \mathsf{Approximate}$ by $\mathcal{N}(0, \mathrm{Id})$
- 2. The score $\nabla \log p_t = \nabla \log \int p_{data}(\mathbf{Y}_0) p_{t|0}(\mathbf{Y}_t \mid \mathbf{Y}_0) d\mathbf{Y}_0$ is intractable \Rightarrow learn it.
- 3. Cannot solve the SDE exactly \Rightarrow discretise.

• The Stein score $\nabla \log p_t = \nabla \log \int p_{data}(\mathbf{Y}_0) p_{t|0}(\mathbf{Y}_t \mid \mathbf{Y}_0) d\mathbf{Y}_0$ is intractable.

- The Stein score $\nabla \log p_t = \nabla \log \int p_{data}(\mathbf{Y}_0) p_{t|0}(\mathbf{Y}_t \mid \mathbf{Y}_0) d\mathbf{Y}_0$ is intractable.
- However, it can be shown that the score is the minimiser of regression objective

$$\nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t) = \operatorname*{arg\,min}_{s \in \mathcal{S}} \mathbb{E}\Big[\|\mathbf{s}(t, \mathbf{Y}_t) - \nabla_{\mathbf{Y}_t} \log p_{t|0}(\mathbf{Y}_t | \mathbf{Y}_0) \|^2 \Big],$$
(3)

where the expectation is taken over the joint $(t, \mathbf{Y}_0, \mathbf{Y}_t)$.

- The Stein score $\nabla \log p_t = \nabla \log \int p_{data}(\mathbf{Y}_0) p_{t|0}(\mathbf{Y}_t \mid \mathbf{Y}_0) d\mathbf{Y}_0$ is intractable.
- However, it can be shown that the score is the minimiser of regression objective

$$\nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t) = \operatorname*{arg\,min}_{s \in \mathcal{S}} \mathbb{E}\Big[\|\mathbf{s}(t, \mathbf{Y}_t) - \nabla_{\mathbf{Y}_t} \log p_{t|0}(\mathbf{Y}_t | \mathbf{Y}_0) \|^2 \Big],$$
(3)

where the expectation is taken over the joint $(t, \mathbf{Y}_0, \mathbf{Y}_t)$.

- We have access to the conditional forward density $p_{t|0}$ in closed form for OU processes.

- The Stein score $\nabla \log p_t = \nabla \log \int p_{data}(\mathbf{Y}_0) p_{t|0}(\mathbf{Y}_t \mid \mathbf{Y}_0) d\mathbf{Y}_0$ is intractable.
- However, it can be shown that the score is the minimiser of regression objective

$$\nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t) = \operatorname*{arg\,min}_{s \in \mathcal{S}} \mathbb{E}\Big[\|\mathbf{s}(t, \mathbf{Y}_t) - \nabla_{\mathbf{Y}_t} \log p_{t|0}(\mathbf{Y}_t | \mathbf{Y}_0) \|^2 \Big],$$
(3)

where the expectation is taken over the joint $(t, \mathbf{Y}_0, \mathbf{Y}_t)$.

- We have access to the conditional forward density $p_{t\mid 0}$ in closed form for OU processes.
- This readily gives a loss to train a neural network $\mathbf{s}_{\theta} : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ parameterisation of the score

$$\mathcal{L}(\theta) = \mathbb{E}[\lambda(t) \| \mathbf{s}_{\theta}(t, \mathbf{Y}_{t}) - \nabla \log p_{t}(\mathbf{Y}_{t} | \mathbf{Y}_{0}) \|^{2}].$$
(4)

Sampling from the reverse process in practice

The (true) reverse process is given by

$$\mathrm{d}\bar{\mathbf{Y}}_{t} = \left[-b(T-t,\bar{\mathbf{Y}}_{t}) + \sigma(T-t)^{2} \nabla \log p_{T-t}(\bar{\mathbf{Y}}_{t})\right] \mathrm{d}t + \sigma(T-t)\mathrm{d}\mathbf{B}_{t}, \quad \bar{\mathbf{Y}}_{0} \sim p(\mathbf{Y}_{T})$$

Sampling from the reverse process in practice

The (true) reverse process is given by $d\bar{\mathbf{Y}}_t = \left[-b(T-t,\bar{\mathbf{Y}}_t) + \sigma(T-t)^2 \nabla \log p_{T-t}(\bar{\mathbf{Y}}_t)\right] dt + \sigma(T-t) d\mathbf{B}_t, \quad \bar{\mathbf{Y}}_0 \sim p(\mathbf{Y}_T)$

The approximate sampling process is given by

$$\mathrm{d}\bar{\mathbf{Y}}_t = \left[-b(T-t,\bar{\mathbf{Y}}_t) + \sigma(T-t)^2 \, \boldsymbol{s}_{\theta}(T-t,\bar{\mathbf{Y}}_t) \, \right] \mathrm{d}t + \sigma(T-t) \mathrm{d}\mathbf{B}_t, \quad \bar{\mathbf{Y}}_0 \sim \mathcal{N}(\mathbf{0},\mathrm{Id})$$

Sampling from the reverse process in practice

The (true) reverse process is given by $d\bar{\mathbf{Y}}_t = \left[-b(T-t,\bar{\mathbf{Y}}_t) + \sigma(T-t)^2 \nabla \log p_{T-t}(\bar{\mathbf{Y}}_t)\right] dt + \sigma(T-t) d\mathbf{B}_t, \quad \bar{\mathbf{Y}}_0 \sim p(\mathbf{Y}_T)$

The approximate sampling process is given by

$$\mathrm{d}\bar{\mathbf{Y}}_t = \left[-b(T-t,\bar{\mathbf{Y}}_t) + \sigma(T-t)^2 \, \boldsymbol{s}_{\theta}(T-t,\bar{\mathbf{Y}}_t) \, \right] \mathrm{d}t + \sigma(T-t) \mathrm{d}\mathbf{B}_t, \quad \bar{\mathbf{Y}}_0 \sim \mathcal{N}(\mathbf{0},\mathrm{Id})$$

Figure 4: Reverse process

Improved sampling using Langevin dynamics

- Euler-Maruyama method introduces discretisation errors.
- Song et al. 2021 suggest to use Langevin dymanics to correct each reverse step.

Improved sampling using Langevin dynamics

- Euler-Maruyama method introduces discretisation errors.
- Song et al. 2021 suggest to use Langevin dymanics to correct each reverse step.

Langevin dynamics:

$$\mathrm{d}\mathbf{Y}_t = \nabla_{\mathbf{Y}_t} \log p(\mathbf{Y}_t) \,\mathrm{d}t + \frac{\sqrt{2}}{\sqrt{2}} \,\mathrm{d}\mathbf{B}_t,\tag{5}$$

As $t \to \infty$, the dynamics converges towards the distribution $p(\cdot)$.

Improved sampling using Langevin dynamics

Euler-Maruyama method introduces discretisation errors.

(

• Song et al. 2021 suggest to use Langevin dymanics to correct each reverse step.

Langevin dynamics:

$$d\mathbf{Y}_t = \nabla_{\mathbf{Y}_t} \log p(\mathbf{Y}_t) dt + \sqrt{2} d\mathbf{B}_t,$$
(5)

As $t \to \infty$, the dynamics converges towards the distribution $p(\cdot)$.

Predictor-Corrector sampling

Credits to Valentin De Bortoli for graphic.

- Continuously noise data samples with forward SDE
- Aim: time-reversal of this process \Rightarrow **denoising** process

Motivation Geometric Neural Diffusion Processes

Goal

Goal

Why

- Many physical and natural phenomena are better characterised as functions.
- Meta-learn and treat limited data as originating from a function

Feature Fields: $f : \mathcal{X} \to \mathbb{R}^d$

- Mathematical framework for modelling natural phenomena.
- Examples: Temperature $f : \mathcal{X} \to \mathbb{R}$, and wind direction on globe $f : \mathcal{S}^2 \to T\mathcal{S}^2$.

(a) Temperature map and wind vector fields.

Prior invariances

Encode invariances w.r.t. group transformations. For a group G, we want $\forall g \in G$

$$p(f) = p(g \cdot f) \quad \text{with} \quad g \cdot f = \rho(g) f(g^{-1}x).$$

Prior invariances

Encode invariances w.r.t. group transformations. For a group G, we want $\forall g \in G$

$$p(f) = p(g \cdot f)$$
 with $g \cdot f = \rho(g)f(g^{-1}x).$

Examples translation invariance (stationarity) and rotational invariance.

Conditional process

- Interested in the conditional process given a set of observations $C = \{(x_n, y_n)\}_{n=1}$.
- If the prior is G-invariant, then the conditional is G-equivariant:

 $p(f \mid \mathcal{C}) = p(g \cdot f \mid g \cdot \mathcal{C}) \text{ where } g \cdot \mathcal{C} = \{(g \cdot x_n, \rho(g)y_n)\}.$

Diffusion on Function Spaces

Continuous noising process

We construct the forward **noising process** $(\mathbf{Y}_t(x))_{t\geq 0} \triangleq (\mathbf{Y}_t(x^1), \dots, \mathbf{Y}_t(x^n))_{t\geq 0}$ defined by the multivariate SDE (multivariate Ornstein-Uhlenbeck process)

$$d\mathbf{Y}_t(x) = \frac{1}{2} \{m(x) - \mathbf{Y}_t(x)\} \beta_t dt + \frac{\beta_t^{1/2} \mathbf{K}(x, x)^{1/2}}{d\mathbf{B}_t} d\mathbf{B}_t,$$
(6)

where $K(x, x)_{i,j} = k(x^i, x^j)$ with $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a kernel and $m : \mathcal{X} \to \mathcal{Y}$.

We construct the forward **noising process** $(\mathbf{Y}_t(x))_{t\geq 0} \triangleq (\mathbf{Y}_t(x^1), \dots, \mathbf{Y}_t(x^n))_{t\geq 0}$ defined by the multivariate SDE (multivariate Ornstein-Uhlenbeck process)

$$d\mathbf{Y}_t(x) = \frac{1}{2} \{ m(x) - \mathbf{Y}_t(x) \} \beta_t dt + \frac{\beta_t^{1/2} \mathbf{K}(x, x)^{1/2}}{d\mathbf{B}_t} d\mathbf{B}_t,$$
(6)

where $K(x, x)_{i,j} = k(x^i, x^j)$ with $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a kernel and $m : \mathcal{X} \to \mathcal{Y}$.

- $\mathbf{Y}_t(x) \to \mathcal{N}(m(x), \mathcal{K}(x, x))$ with geometric rate, for any $x \in \mathcal{X}^n$.
- $\mathbf{Y}_t \to \operatorname{GP}(m,k) \triangleq \mathbf{Y}_{\infty}$ (Phillips et al., 2022).

We construct the forward **noising process** $(\mathbf{Y}_t(x))_{t\geq 0} \triangleq (\mathbf{Y}_t(x^1), \dots, \mathbf{Y}_t(x^n))_{t\geq 0}$ defined by the multivariate SDE (multivariate Ornstein-Uhlenbeck process)

$$d\mathbf{Y}_t(x) = \frac{1}{2} \{ m(x) - \mathbf{Y}_t(x) \} \beta_t dt + \frac{\beta_t^{1/2} \mathbf{K}(x, x)^{1/2}}{d\mathbf{B}_t} d\mathbf{B}_t,$$
(6)

where $K(x, x)_{i,j} = k(x^i, x^j)$ with $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a kernel and $m : \mathcal{X} \to \mathcal{Y}$.

- $\mathbf{Y}_t(x) \to \mathcal{N}(m(x), \mathcal{K}(x, x))$ with geometric rate, for any $x \in \mathcal{X}^n$.
- $\mathbf{Y}_t \to \operatorname{GP}(m,k) \triangleq \mathbf{Y}_{\infty}$ (Phillips et al., 2022).
- \mathbf{Y}_t interpolates between \mathbf{Y}_0 and \mathbf{Y}_{∞} .

$$k(x, x') = k_{\rm rbf}(x, x') = \sigma^2 \exp\left(\frac{\|x - x'\|^2}{2l^2}\right), \text{ with } l = 1.$$

$$k(x, x') = k_{\rm rbf}(x, x') = \sigma^2 \exp\left(\frac{||x - x'||^2}{2l^2}\right), \text{ with } l = 1.$$

 $k(x, x') = k_{\rm rbf}(x, x')$, with l = 0.2.

$$k(x, x') = k_{\rm rbf}(x, x') = \sigma^2 \exp\left(\frac{||x - x'||^2}{2l^2}\right), \text{ with } l = 1.$$

 $k(x, x') = k_{\rm rbf}(x, x')$, with l = 0.2.

 $k(x,x')=\delta_x(x')$ (The tranditional DDPM settings).

Denoising process

As before, the time-reversal process $(\bar{\mathbf{Y}}_t(x))_{t\geq 0}$ also satisfies an SDE given by

$$d\bar{\mathbf{Y}}_{t}(x) = \{-\frac{1}{2}(m(x) - \bar{\mathbf{Y}}_{t}(x)) + \mathbf{K}(x, x)\nabla\log p_{T-t}(\bar{\mathbf{Y}}_{t}(x))\}\beta_{T-t}dt + \beta_{T-t}^{1/2}\mathbf{K}(x, x)^{1/2}d\mathbf{B}_{t},$$
(7)

with $\bar{\mathbf{Y}}_0 \sim \mathrm{GP}(m,k)$.

Denoising process

As before, the time-reversal process $(\bar{\mathbf{Y}}_t(x))_{t\geq 0}$ also satisfies an SDE given by

$$d\bar{\mathbf{Y}}_{t}(x) = \{-\frac{1}{2}(m(x) - \bar{\mathbf{Y}}_{t}(x)) + \mathbf{K}(x, x)\nabla \log p_{T-t}(\bar{\mathbf{Y}}_{t}(x))\}\beta_{T-t}dt + \beta_{T-t}^{1/2}\mathbf{K}(x, x)^{1/2}d\mathbf{B}_{t},$$
(7)

with $\bar{\mathbf{Y}}_0 \sim \mathrm{GP}(m,k)$.

To simulate the reverse process we learn the (preconditioned) score

$$\mathbf{s}_{\theta}^{K}(t, \bar{\mathbf{Y}}_{t}(x), x) \approx \mathbf{K}(x, x) \nabla \log p_{T-t}(\bar{\mathbf{Y}}_{t}(x)),$$

where $s_{\theta}^{K} : \mathbb{R} \times \mathcal{Y}^{m} \times \mathcal{X}^{m} \to T\mathcal{Y}^{m}$. We accomplish this using the score matching objective

$$\mathcal{L}(\theta) = \mathbb{E}\left[\lambda(t) \| \boldsymbol{s}_{\theta}^{K}(t, \mathbf{Y}_{t}(x), x) + \mathbf{K}^{1/2} \boldsymbol{\epsilon} \|_{2}^{2}\right].$$

Encoding Invariances

Prior and Conditional Symmetries

24

Proposition 1: Invariant Neural Diffusion Processes

The denoising process on functions as defined above and with initial sample given by $p(\bar{\mathbf{Y}}_0)=\mathrm{GP}(m,k)$ is G-invariant if

Proposition 2: Invariant Neural Diffusion Processes

The denoising process on functions as defined above and with initial sample given by $p(\bar{\mathbf{Y}}_0)=\mathrm{GP}(m,k)$ is G-invariant if

1. m and k are both G-equivariant (i.e. G-invariant Gaussian process), i.e.

$$m(g \cdot x) = \rho(g)m(x)$$
 and $k(g \cdot x, g \cdot x') = \rho(g)k(x, x')\rho(g)^{\top}$,

Proposition 3: Invariant Neural Diffusion Processes

The denoising process on functions as defined above and with initial sample given by $p(\bar{\mathbf{Y}}_0)=\mathrm{GP}(m,k)$ is G-invariant if

1. m and k are both G-equivariant (i.e. G-invariant Gaussian process), i.e.

$$m(g \cdot x) = \rho(g)m(x)$$
 and $k(g \cdot x, g \cdot x') = \rho(g)k(x, x')\rho(g)^{\top}$,

2. the score network is G-equivariant vector field, i.e.

$$\mathbf{s}_{\theta}(t, g \cdot x, \rho(g)y) = \rho(g)\mathbf{s}_{\theta}(t, x, y),$$

for all $x \in \mathcal{X}, g \in G$.

E(d)-invariant Gaussian processes

• E(d)-equivariant means $m : \mathbb{R}^d \to \mathbb{R}^d$ are constant functions.

E(d)-invariant Gaussian processes

- $\mathcal{E}(d)$ -equivariant means $m: \mathbb{R}^d \to \mathbb{R}^d$ are constant functions.
- E(d)-equivariant kernels $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ include
 - Diagonal kernels $k = k_0 \operatorname{Id}$ with k_0 invariant (Holderrieth et al., 2021).

►
$$k_{\text{curl}} = k_0 A$$
 with $A(x, x') = \text{Id} - \frac{(x-x')(x-x')^\top}{l^2}$ (Macêdo and Castro, 2010).

•
$$k_{\text{div}} = k_0 B$$
 with $B(x, x') = \frac{(x-x')(x-x')^{\top}}{l^2} + \left(n - 1 - \frac{\|x-x'\|^2}{l^2}\right) \text{Id.}$

Invariant neural diffusion processes (Cont'd)

Figure 10: $(g \cdot \mathbf{Y}_t(x))_{x \in \mathcal{X}}$

Conditional sampling

Conditional sampling in diffusion models

Goal: Sample from $y \sim p(\cdot | C)$ given a condition C.

Conditional sampling in diffusion models

Goal: Sample from $y \sim p(\cdot | C)$ given a condition C.

'a hedgehog using a calculator" "a corgi wearing a red bowtie and a purple party hat" "robots meditating in a vipassana retreat" "a fall landscape with a small cottage next to a lake"

Figure 11: $p(image \mid text)$

Often the condition is a property (e.g., caption).

Conditional sampling in Neural Diffusion Processes

Condition is a subspace of the state space: $\mathbf{Y}^{\mathcal{C}} = (y^{(1)}, \dots, y^{(m)}).$

Figure 12: Conditional samples $p(\cdot | \mathbf{Y}^{\mathcal{C}})$.

Conditional sampling in Neural Diffusion Processes

Condition is a subspace of the state space: $\mathbf{Y}^{\mathcal{C}} = (y^{(1)}, \dots, y^{(m)}).$

Figure 12: Conditional samples $p(\cdot | \mathbf{Y}^{\mathcal{C}})$.

29

Conditional sampling in diffusion models

In the reverse process we need to follow the conditional score

$$\nabla \log p_t(\mathbf{Y}_t) \to \nabla \log p_t(\mathbf{Y}_t \mid \mathbf{Y}^{\mathcal{C}})$$

Conditional sampling in diffusion models

In the reverse process we need to follow the conditional score

$$\nabla \log p_t(\mathbf{Y}_t) \to \nabla \log p_t(\mathbf{Y}_t \mid \mathbf{Y}^{\mathcal{C}})$$

- 1. Amortisation / Classifier-free (Ramesh et al., 2022)
- 2. Classifier-guidance (Dhariwal and Nichol, 2021)
- 3. Replacement methods RePaint (Lugmayr et al., 2022)
- 4. Reconstruction guidance (Finzi et al., 2023)
- 5. SMC-based (Trippe et al., 2022)

Langevin Dynamics based Conditional Sampling

Applying Bayes' rule to the conditional score gives

 $\nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t \mid \mathbf{Y}^{\mathcal{C}}) = \nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t, \mathbf{Y}^{\mathcal{C}}) - \nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}^{\mathcal{C}}) = \nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t, \mathbf{Y}^{\mathcal{C}})$

Langevin Dynamics based Conditional Sampling

Applying Bayes' rule to the conditional score gives

 $\nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t \mid \mathbf{Y}^{\mathcal{C}}) = \nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t, \mathbf{Y}^{\mathcal{C}}) - \nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}^{\mathcal{C}}) = \nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t, \mathbf{Y}^{\mathcal{C}})$

Sampling algorithm

Predictor Use standard EM reverse process with score $s_{\theta}^{K}(t, x, [\mathbf{Y}_{t}, \mathbf{Y}_{0}^{C}])$. Corrector Correct discretisation errors using Langevin dynamics

Langevin Dynamics based Conditional Sampling

Applying Bayes' rule to the conditional score gives

 $\nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t \mid \mathbf{Y}^{\mathcal{C}}) = \nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t, \mathbf{Y}^{\mathcal{C}}) - \nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}^{\mathcal{C}}) = \nabla_{\mathbf{Y}_t} \log p_t(\mathbf{Y}_t, \mathbf{Y}^{\mathcal{C}})$

Sampling algorithm

Predictor Use standard EM reverse process with score $s_{\theta}^{K}(t, x, [\mathbf{Y}_{t}, \mathbf{Y}_{0}^{C}])$.

Corrector Correct discretisation errors using Langevin dynamics

Experimental results

1D regression: Datasets

32

1D regression: Predictive log-likelihood (Cont'd)

Table 1: Mean test log-likelihood (higher is better)

		SE	$\operatorname{Matérn}(\frac{5}{2})$	Weakly Per.	Sawtooth	MIXTURE
GP (OP	гімим)	$0.70 {\pm} 0.00$	$0.31 {\pm} 0.00$	-0.32 ± 0.00	-	-
T(1)-G	ЕОMNDP	0.72 ± 0.03	0.32 ± 0.03	-0.38 ± 0.03	$3.39 {\pm} 0.04$	0.64 ± 0.08
MDP		0.71 ± 0.03	0.30 ± 0.03	-0.37 ± 0.03	$3.39 {\pm} 0.04$	0.64 ± 0.08
$\frac{1}{2}$ GNP		$0.70 {\pm} 0.01$	$0.30 {\pm} \scriptscriptstyle 0.01$	-0.47 ± 0.01	$0.42 {\pm} 0.01$	$0.10 {\pm} 0.02$
[¬] ConvNI	2	$-0.46 {\pm} 0.01$	$-0.67 {\pm} 0.01$	-1.02 ± 0.01	$1.20 {\pm} 0.01$	$-0.50 {\pm} 0.02$

1D regression: Predictive log-likelihood (Cont'd)

Table 2: Mean test log-likelihood (higher is better)

		SE	$\operatorname{Matérn}(\frac{5}{2})$	Weakly Per.	Sawtooth	MIXTURE
INTERPOLAT.	GP (optimum)	$0.70 {\pm} 0.00$	$0.31 {\pm} 0.00$	$-0.32 {\pm} 0.00$	-	-
	T(1)-GEOMNDP	0.72 ± 0.03	0.32 ± 0.03	$-0.38\pm$ 0.03	$3.39 {\pm} 0.04$	$0.64{\pm}0.08$
	NDP	0.71 ± 0.03	0.30 ± 0.03	-0.37 ± 0.03	$3.39 {\pm} 0.04$	$0.64 {\pm} 0.08$
	GNP	$0.70 {\pm} \scriptscriptstyle 0.01$	$0.30{\pm}_{0.01}$	-0.47 ± 0.01	$0.42 {\pm} 0.01$	$0.10 {\pm} 0.02$
	ConvNP	-0.46 ± 0.01	$-0.67 {\pm} 0.01$	-1.02 ± 0.01	$1.20 {\pm} 0.01$	$-0.50 {\pm} 0.02$
GENERALISAT.	GP (optimum)	$0.70 {\pm} 0.00$	$0.31 {\pm} 0.00$	-0.32 ± 0.00	-	-
	T(1)-GEOMNDP	$0.70{\pm}_{0.02}$	0.31 ± 0.02	-0.38 ± 0.03	$3.39 {\pm} 0.03$	$0.62{\scriptstyle \pm 0.02}$
	NDP	*	*	*	*	*
	GNP	$0.69{\pm}_{0.01}$	$0.30{\pm}_{0.01}$	-0.47 ± 0.01	$0.42 {\pm} 0.01$	$0.10 {\pm} 0.02$
	ConvNP	$-0.46 {\pm} 0.01$	-0.67 ± 0.01	-1.02 ± 0.01	$1.19 {\pm} 0.01$	-0.53 ± 0.02

2D invariant Gaussian vector fields

Model	SE	CURL-FREE	DIV-FREE
GP	$0.56_{\pm 0.00}$	$0.66_{\pm 0.00}$	$0.66_{\pm 0.00}$
NDP	$0.55_{\pm 0.00}$	$0.62_{\pm 0.01}$	$0.62_{\pm 0.01}$
E(2)-GeomNDP	$0.56_{\pm 0.01}$	$0.65_{\pm0.01}$	$0.66_{\pm 0.01}$

2D invariant Gaussian vector fields (Cont'd)

Global tropical cyclone trajectory prediction

- $f: \mathbb{R} \to S^2$ with hurricane trajectory data from (Knapp et al., 2018).
- $d\mathbf{Y}_t(x_k) = -\underline{b}(\mathbf{Y}_t(x_k))^{\bullet 0} dt + \sqrt{\beta_t} d\mathbf{B}_t^{\mathcal{M}} \forall k = 1, \dots, n$ (Bortoli et al., 2022)
- $p(\mathbf{Y}_t(x)) \xrightarrow[t \to \infty]{} \mathrm{U}(\mathcal{S}^2)^{\otimes n}.$

Figure 14: Left: 1000 samples from the training data. Right: 1000 samples from trained model.

Global tropical cyclone trajectory prediction (Cont'd)

					L.C.
(a) Interpolation	(b) Extrapolation				
Model	Test data Likelihood	INTERP Likelihood	OLATION MSE (km)	Extraf Likelihood	OLATION MSE (km)
$\operatorname{GeomNDP}(\mathbb{R} \to S^2)$	$802_{\pm 5}$	$535_{\pm4}$	$162_{\pm 6}$	$536_{\pm 4}$	$496_{\pm 14}$
Stereo GP $(\mathbb{R} \to \mathbb{R}^2 / \{0\})$	$393_{\pm 3}$	$266_{\pm 3}$	$2619_{\pm 13}$	$245_{\pm 2}$	$6587_{\pm 55}$
NDP $(\mathbb{R} \to \mathbb{R}^2)$	-	-	$166_{\pm 22}$	-	$769_{\pm 48}$
$\operatorname{GP} (\mathbb{R} \to \mathbb{R}^2)$	-	-	$6852_{\pm 41}$	-	$8138_{\pm 8}$

- Aim: probabilistic model over features fields.
- Constructed diffusion models over function space by correlating finite marginals
- Incorporating group invariance by
 - targetting invariant Gaussian processes and
 - parameterising the score with an equivariant neural network
- Sampling from the conditional process with Langevin corrector
- Empirically demonstrated modelling capacity on scalar and vector fields, with Euclidean and spherical output space

Thank you for your attention. Questions?

Credits to Michael Hutchinson for this 3D render.

Appendix
Steerable feature fields

A feature field is a tuple (f, ρ) with $f : \mathcal{X} \to \mathbb{R}^d$ a mapping between $x \in \mathcal{X}$ to some feature f(x) with representation $\rho : G \to \operatorname{GL}(\mathbb{R}^d)$ (Scott and Serre, 1996). The action of $G = \operatorname{E}(d) = \operatorname{T}(d) \rtimes \operatorname{O}(d)$ on the feature field f given by

$$g \cdot f(x) = (uh) \cdot f(x) \triangleq \rho(h) f\left(h^{-1}(x-u)\right)$$
(8)

Typical examples of feature fields include:

▶ Scalar fields $\rho_{triv}(h) \triangleq 1$ e.g. temperature or potential fields.

▶ Vectors fields $\rho_{Id}(h) \triangleq h$ e.g. wind or force fields.

f(x)	$f(g^{-1}x)$	$\rho(h)f(g^{-1}x)$
ATTIC		
	· · · · · · · · · ·	

1D regression: Kernel ablation

Figure 16: Ablation study targeting different limiting kernels and score parametrisations.

References

- M. S. Albergo and E. Vanden-Eijnden. Building Normalizing Flows with Stochastic Interpolants. Oct. 2022. DOI: 10.48550/arXiv.2209.15571. Cited on page 9.
- V. D. Bortoli, E. Mathieu, M. J. Hutchinson, J. Thornton, Y. W. Teh, and A. Doucet. Riemannian Score-Based Generative Modelling. In *Thirty-Sixth Conference on Neural Information Processing Systems*, 2022. Cited on page 68.
- P. Cattiaux, G. Conforti, I. Gentil, and C. Léonard. Time reversal of diffusion processes under a finite entropy condition. arXiv preprint arXiv:2104.07708, 2021. Cited on pages 15, 16.
- P. Dhariwal and A. Nichol. Diffusion Models Beat GANs on Image Synthesis. 2021. arXiv: 2105.05233 [cs.LG]. Cited on pages 57, 58.
- M. A. Finzi, A. Boral, A. G. Wilson, F. Sha, and L. Zepeda-Núñez. User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical

Systems. In *International Conference on Machine Learning*, pages 10136–10152. PMLR, 2023. Cited on pages 57, 58.

- U. G. Haussmann and E. Pardoux. Time reversal of diffusions. *The Annals of Probability*, 14(4):1188–1205, 1986. Cited on pages 15, 16.
- P. Holderrieth, M. J. Hutchinson, and Y. W. Teh. Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes. In International Conference on Machine Learning, 2021. Cited on pages 49, 50.
- A. Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 6(4), 2005. Cited on pages 17–20.
- H. J. Knapp Kenneth R. Diamond, J. P. Kossin, M. C. Kruk, and C. J. I. Schreck. International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version

- **4**. Technical report, NOAA National Centers for Environmental Information, 2018. DOI: https://doi.org/10.25921/82ty-9e16. Cited on page 68.
- A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11461–11471, 2022. Cited on pages 57, 58.
- I. Macêdo and R. Castro. Learning Divergence-Free and Curl-Free Vector Fields with Matrix-Valued Kernels. Pré-Publicações / A.: Pré-publicações. IMPA, 2010. Cited on pages 49, 50.
- A. Phillips, T. Seror, M. Hutchinson, V. De Bortoli, A. Doucet, and E. Mathieu. Spectral Diffusion Processes. Nov. 2022. URL: http://arxiv.org/abs/2209.14125. Cited on pages 36–38.

- A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical Text-Conditional Image Generation with CLIP Latents. Apr. 2022. DOI: 10.48550/arXiv.2204.06125. Cited on pages 57, 58.
- S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou, S. Kashem, S. Madge, R. Prudden, A. Mandhane, A. Clark, A. Brock, K. Simonyan, R. Hadsell, N. Robinson, E. Clancy, A. Arribas, and S. Mohamed. Skilful Precipitation Nowcasting Using Deep Generative Models of Radar. *Nature*, 597(7878):672–677, Sept. 2021. ISSN: 0028-0836, 1476-4687. DOI: 10.1038/s41586-021-03854-z. Cited on page 7.
- L. Scott and J. Serre. Linear Representations of Finite Groups. Graduate Texts in Mathematics. Springer New York, 1996. ISBN: 978-0-387-90190-9. URL: https://books.google.co.uk/books?id=NCfZgr54TJ4C. Cited on page 73.

- Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In International Conference on Learning Representations, 2021. Cited on pages 11, 17–20.
- B. L. Trippe, J. Yim, D. Tischer, T. Broderick, D. Baker, R. Barzilay, and T. Jaakkola. Diffusion Probabilistic Modeling of Protein Backbones in 3D for the Motif-Scaffolding Problem. June 2022. DOI: 10.48550/arXiv.2206.04119. Cited on pages 6, 57, 58.
- P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23(7):1661–1674, 2011. Cited on pages 17–20.
- M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang. GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation. In *International Conference on*

Learning Representations, 2022. URL:

https://openreview.net/forum?id=PzcvxEMzvQC. Cited on page 6.