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Introduction to Gaussian Processes
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Distribution over functions
Gaussian processes are distributions over functions:

f(x) = ax+ b, a ∼ N (0, 1), b ∼ N (0, 1), (1)

with
m(x) = E[f(x)] = E[a]x+ E[b] = 0 and σ2(x) = x2 + 1 (2)
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Gaussian Processes
Prior.

yi = f(xi) + εi, where f ∼ GP(mprior, kprior) and εi ∼ N (0, σ2) (3)

Posterior. Which yields an analytic posterior:

f | y ∼ GP (mpost, kpost) (4)
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Prior beliefs
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Gaussian Process deficiencies

1. Gaussian marginals,
2. Choosing the kernel à-priori is hard,
3. Simple kernels cannot effectively model ‘complex’ data,
4. Expressive kernels either require domain knowledge or need to be inferred.

Motorcycle dataset Rocket Booster data
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Advanced Gaussian Processes
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Deep Gaussian Processes

Deep Gaussian Process Hierarchical model by GP composition

y = (fL ◦ fL−1 ◦ . . . ◦ f1)(x) + ε, where f` ∼ GP(0, k`) (5)
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Deep Gaussian Processes

Motivations
1. Deep learning has shown to work

well,
2. More flexible priors,
3. Deep and complex Bayesian model.
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Example DGPs: LGBB1

Single-layer GP Two-layer DGP

1Langley Glide-Back Booster (LGBB), see https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/surrogates/
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Conditional Density Estimation
• The mean E[f(x∗)] is not always informative enough due to multi-modality,

asymmetry or heteroscedasticity.
• We are interested in learning the full conditional distribution p(f(x∗) | x∗).

Examples
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Latent Variable GP models

X

f(·)

y W

Model.
yi = f([xi, wi]) f ∼ GP and wi ∼ N (0, 1).

Posterior. We need to learn the posterior of the GP and the latent variables
p(f, {w}ni | D). In practice, we learn a mean-field approximation

p(f, {w}ni | D) ≈ q(f)

n∏
i

q(wi) (6)
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Example: Manhattan Taxi Drop-off
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Example: ‘DGP’ letters
GP GP-GP

LV-GP LV-GP-GP
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Deep Latent Variable GP: Motorcycle
Single Layer model Deep Latent GP
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GPs on Manifolds
Most kernels we know are defined on Rd. Some problems are more naturally defined
in other space.

Images courtesy of Alexander Terenin
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Decision Making: Bayesian Optimisation
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Demo

Lets try to find the minimum of f(x) = (6x− 2)2 sin(12x− 4)

Using as few function evaluations as possible!
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Demo
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Demo

Suppose we make evaluations at 0, 0.5 and 1

Where should we evaluate next? Why is this an exploration-exploitation problem?
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Demo
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Possible functions

Possible functions that pass through the observed points
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A Gaussian process model

We can summarise this belief by fitting a Gaussian process

Predictive distribution at x is Gaussian g(x) ∼ GP(m, k)
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Choice of kernel function

Represents prior knowledge about function shape

Squared Exponential Matérn-32
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Model vs. truth

Compare our statistical model with the truth

Learned GP Truth
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Where do we evaluate next?

We measure the utility of a potential evaluation with an acquisition function.

Learned GP Acquisition Function

Lower Confidence Bound acquisition function: α(x) = µ(x)− βσ(x)
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Step 1

Model after 4 initial points and 1 evaluation chosen by Bayesian optimisation
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Step 2

Model after 4 initial points and 2 evaluations chosen by Bayesian optimisation
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Step 3

Model after 4 initial points and 3 evaluations chosen by Bayesian optimisation



28/33

Bayesian optimisation demo: Step 4

Model after 4 initial points and 4 evaluations chosen by Bayesian optimisation



29/33

Take-away messages

1. Gaussian processes are a framework for modelling unknown functions.
2. The classic framework can be extended in many ways to model more complex

problems
3. Caveat: these models typically don’t work out-of-the-box. A lot of expertise

(read: trial and error) is needed to fit them satisfactory.
4. Ongoing topic of research in terms of scalability (faster and larger datasets) and

accuracy (richer approximate posteriors)
5. Allow for principled decision-making (e.g., Bayesian optimisation)
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Software

• GP models in TensorFlow:
https://github.com/GPflow/GPflow

• Kernels (for GPs) on interesting spaces:
https://github.com/GPflow/GeometricKernels

• Deep Gaussian processes and Latent Variable models:
https://github.com/Secondmind-Labs/GPflux

• Bayesian Optimisation:
https://github.com/Secondmind-Labs/Trieste

https://github.com/GPflow/GPflow
https://github.com/GPflow/GeometricKernels
https://github.com/Secondmind-Labs/GPflux
https://github.com/Secondmind-Labs/Trieste
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Thank you
Feel free to e-mail me if you have any questions: vd309@cam.ac.uk

vd309@cam.ac.uk
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