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Contribution

We improve the scaling of Sparse GPs with #datapoints and #inputs

Airline dataset:
m Regression problem
m 6.10° datapoints

m 8 input dimensions

Setup
m GTX 1070 GPU
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Variational Inference with Spherical Harmonics (VISH)

Gist of method:
m make inputs d + 1 dimensional
m project data radially on $¢
m Fast SVGP on the sphere

m map predictions on $9 back to
the original space

The efficiency of VISH comes from using spherical harmonics as inducing functions for
the SVGP on the sphere.
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From inducing points to inducing features

Inducing Points VISH
Um = f(zm) Um = <f7 ¢m>7—l
Kuu = Kuu =
Kol is O(M3) Kyl is O(M)

Orthogonality of the basisfunctions ¢ leads to diagonal Ky, and O(M) inversion

4/14



()




Sparse Variational Gaussian processes
Scalable and flexible

m Capture the GP by a set of inducing variables u = f(Z), at locations z1,...,zpy.
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m Capture the GP by a set of inducing variables u = f(Z), at locations zj, . ..

m Minimise KL-divergence from p(f(-)|y) to q(f(-)) = GP(u(-), v(:,"))

() = ky (YKgam
v ") = k() =k () K (Kau — S)Kau k()
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m Capture the GP by a set of inducing variables u = f(Z), at locations z1,...,zpy.
m Minimise KL-divergence from p(f(-)|y) to q(f(-)) = GP(u(:-),v(-,"))

v ") = k() =k () K (Kau — S)Kau k()

where [Kuu]m m' = Cov(Um, tpy) and [ku(-)]m = Cov(um, f(-)).
m A more flexible (e.g. non-Gaussian likelihoods) and scalable (e.g. mini-batching)
model at a cost of O(M3 + M?N).

m Speedup through structure in the Ky, matrix (e.g. Hensman et al 2017, VFF).
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Outline

m Gaussian processes on the circle and hypersphere
m Spherical harmonics as inducing features

m Linear projection data on the hyper-sphere
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Gaussian processes on the circle

k(91, 92) = f= Zi§i¢,’(9), with
®(0) = [cos(i0),sin(i0)]72g D720 Xidvi(01)¢i(62) £~ N(0, A1)
=2 - Q>
A ~J
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Spherical Harmonics

m Orthonormal basis on the
hyper sphere

m Eigenfunctions the
Laplace-Beltrami
d—
operator AS 1¢>,’ =\ ¢;
m Eigenfunction of zonal
kernels
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Mercer's theorem for zonal kernels on the sphere

m Zonal kernels are the spherical counterpart of stationary
kernels k(x,x") = k’(distance(x, x)).
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m Zonal kernels are the spherical counterpart of stationary
kernels k(x, x") = k'(distance(x, x')).

m Mercer's decomposition: Any zonal kernel k on the hyper-
sphere can be decomposed as

k(x,X) = > i ¢i(x) ¢i(x).
i=0
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Mercer's theorem for zonal kernels on the sphere

m Zonal kernels are the spherical counterpart of stationary
kernels k(x, x") = k'(distance(x, x')).

m Mercer's decomposition: Any zonal kernel k on the hyper-
sphere can be decomposed as

o
k(,x') = X ¢i(x) ¢i(X).
i=0
m Karhunen—Loéve expansion: A GP f on the hypersphere with zonal covariance k
can be written £ = . &¢; with & ~ N(0, \;):

f=% " +&- +&- T +8-0 +&- L.
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Spherical harmonics as inducing features in SVGPs

m Define the kernel's RKHS H with reproducing inner-product:

(k(x,-), h(-))2 = h(x)
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Spherical harmonics as inducing features in SVGPs

m Define the kernel's RKHS H with reproducing inner-product:
(k(x,-), h(-))n = h(x)
m Approximate posterior constructed out of inducing features

| um = (F, $m)|

—> Diagonal covariance matrix: [Kuu]m,m = Cov(um, Uny) = (Gm, Opy )2 = AL Sy
= Spherical Harmonics as features [ky()]m = Cov(um, f(:)) = om(*)
— A O(M2N) approximate GP q(f(-))

GP(2T()m; k(.") - 2 (A - B()).

where A = diag(A1,...,A\v) and ®(:) = [¢1(-), .-, om(*)]-
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Linear mapping to the hypersphere

Most datasets do not correspond to data on a hypersphere...

The proposed solution is to augment
the inputs with a constant variable
(bias) before projecting it radially
onto the hypersphere.

Although such construction may seem arbitrary, it is used implicitly in the Arc-Cosine
kernel [Cho & Saul, 2009]:

x T x/
k(x,x') = [|x]|||x]| with 6 = arccos ————.
—— [ [[[x]
radial angular
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Experiment
Airline dataset: 6,000,000 datapoints regression task fitted in 40 seconds on a single cheap GTX 1070 GPU
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Conclusion

Summary of the advantages

m It is the fastest SVGP model to date
= No need for expensive hardware

m The natural ordering of spherical harmonics makes our model scale nicely with the
input dimension
= Does not suffer from the curse of dimensionality as VFF

m Similarities with Arc-cosine kernel makes extrapolation properties similar to Neural
Networks

Reach out to have a chat if you want to know more!
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