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Contribution
We improve the scaling of Sparse GPs with #datapoints and #inputs

Airline dataset:
Regression problem
6.106 datapoints
8 input dimensions

Setup
GTX 1070 GPU
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Variational Inference with Spherical Harmonics (VISH)

Gist of method:
make inputs d + 1 dimensional
project data radially on Sd

Fast SVGP on the sphere
map predictions on Sd back to
the original space

x

bias

y

The efficiency of VISH comes from using spherical harmonics as inducing functions for
the SVGP on the sphere.
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From inducing points to inducing features

Inducing Points

um = f (zm)

Kuu =

K−1
uu is O(M3)

VISH

um = 〈f , φm〉H

Kuu =

K−1
uu is O(M)

Orthogonality of the basisfunctions φ leads to diagonal Kuu and O(M) inversion
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Deep-dive
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Sparse Variational Gaussian processes
Scalable and flexible

Capture the GP by a set of inducing variables u = f (Z ), at locations z1, . . . , zM .

Minimise KL-divergence from p(f (·) | y) to q(f (·)) = GP(µ(·), ν(·, ·′)){
µ(·) = k>u (·)K−1

uu m

ν(·, ·′) = k(·, ·′)− k>u (·)K−1
uu (Kuu − S)K−1

uu ku(·′)
,

where [Kuu]m,m′ = Cov(um, um′) and [ku(·)]m = Cov(um, f (·)).
A more flexible (e.g. non-Gaussian likelihoods) and scalable (e.g. mini-batching)
model at a cost of O(M3 + M2N).
Speedup through structure in the Kuu matrix (e.g. Hensman et al 2017, VFF).
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Outline

Gaussian processes on the circle and hypersphere
Spherical harmonics as inducing features
Linear projection data on the hyper-sphere
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Gaussian processes on the circle

Φ(θ) = [cos(iθ), sin(iθ)]∞i=0

k(θ1, θ2) =∑∞
i=0 λiφi (θ1)φi (θ2)
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Spherical Harmonics

Orthonormal basis on the
hyper sphere
Eigenfunctions the
Laplace-Beltrami
operator ∆Sd−1

φi = λi φi

Eigenfunction of zonal
kernels
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Mercer’s theorem for zonal kernels on the sphere

x

x’

xT x

Zonal kernels are the spherical counterpart of stationary
kernels k(x , x ′) = k ′(distance(x , x ′)).

Mercer’s decomposition: Any zonal kernel k on the hyper-
sphere can be decomposed as

k(x, x′) =
∞∑
i=0

λi φi (x)φi (x′).

Karhunen–Loève expansion: A GP f on the hypersphere with zonal covariance k
can be written f =

∑
i ξiφi with ξi ∼ N (0, λi ):
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Spherical harmonics as inducing features in SVGPs

Define the kernel’s RKHS H with reproducing inner-product:

〈k(x, ·), h(·)〉H = h(x)

Approximate posterior constructed out of inducing features

um = 〈f , φm〉H

=⇒ Diagonal covariance matrix: [Kuu]m,m′ = Cov(um, um′) = 〈φm, φm′〉H = λ−1
m δmm′

=⇒ Spherical Harmonics as features [ku(·)]m = Cov(um, f (·)) = φm(·)
=⇒ A O(M2N) approximate GP q(f (·))

GP
(
Φ>(·) m; k(·, ·′)−Φ>(·)(Λ− S)Φ(·′)

)
,

where Λ = diag(λ1, . . . , λM) and Φ(·) = [φ1(·), . . . , φM(·)].
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Linear mapping to the hypersphere
Most datasets do not correspond to data on a hypersphere...

The proposed solution is to augment
the inputs with a constant variable
(bias) before projecting it radially
onto the hypersphere.

x

bias

y

Although such construction may seem arbitrary, it is used implicitly in the Arc-Cosine
kernel [Cho & Saul, 2009]:

k(x, x′) = ‖x‖‖x′‖︸ ︷︷ ︸
radial

(sin θ + (π − θ) cos θ)︸ ︷︷ ︸
angular

with θ = arccos
x>x′

‖x‖‖x′‖
.
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Experiment
Airline dataset: 6,000,000 datapoints regression task fitted in 40 seconds on a single cheap GTX 1070 GPU
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Conclusion

Summary of the advantages

It is the fastest SVGP model to date
⇒ No need for expensive hardware

The natural ordering of spherical harmonics makes our model scale nicely with the
input dimension
⇒ Does not suffer from the curse of dimensionality as VFF

Similarities with Arc-cosine kernel makes extrapolation properties similar to Neural
Networks

Reach out to have a chat if you want to know more!
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