Bayesian Image Classification with Deep Convolutional GPs

Vincent Dutordoir¹, Mark van der Wilk², Artem Artemev¹ and James Hensman³

 1 PROWLER.io, 2 Imperial College London, 3 Amazon (Work completed while MvdW and JH were affiliated to PROWLER.io)

International Conference on Artificial Intelligence and Statistics - 2020

CNN classification misses are confidently wrong

5 1 1 9 7 1 8 1 9 1 5 1 8 1 9 8 9 8 5 5 3 1 4 5 8 9 7 1 4 1 9 i. 5 ji & i . 4 i . 7 i . 6 i . 6 , j 9 i . 8 i 4 j 0 · 9 · 3 · A · 8 · 1 · · · · 0 6 6

TICK-GP misses are better calibrated

Convolutional Gaussian processes

[van der Wilk et al., 2017]

Define patch-response function:

$$g(\mathbf{x}^{[p]}) \sim \mathcal{GP}(0, k_g(\mathbf{x}^{[p]}, \mathbf{x}'^{[p']}))$$

Define the image-response function as:

$$f(\mathbf{x}) = \sum_{p} g(\mathbf{x}^{[p]})$$

Linear relation between f and g gives

$$f(\mathbf{x}) \sim \mathcal{GP}\left(0, \sum_{p} \sum_{p'} k_g(\mathbf{x}^{[p]}, \mathbf{x}'^{[p']})\right)$$

Translation Invariance — a limitation of purely convolutional models

Pure convolutional structure: $f(\mathbf{x}) = \sum_{p} g(\mathbf{x}^{[p]})$ Convolution and weighted sum: $f(\mathbf{x}) = \sum_{p} w_{p}g(\mathbf{x}^{[p]})$

Translation Insensitivity

Insensitively: relaxation of invariance

$$k_g \Big((\mathbf{x}^{[p]}, p), (\mathbf{x}^{[p']}, p') \Big) = k_{ ext{patch}} (\mathbf{x}^{[p]}, \mathbf{x}^{[p']}) imes k_{ ext{loc}} (p, p').$$

Experiments

Classification: Shallow GP vs CNN

metric	Conv-GP	CNN	TICK GP
Error	1.70	0.81	0.83
NLPD	0.057	0.030	0.029
NLPD misclassified	1.97	12.52	1.70

$$\mathsf{NLPD} = -\frac{1}{N^*} \sum_i \log p(y_i^* \,|\, x_i^*)$$

more similar experiments on MNIST, Fashion-MNIST and CIFAR-10 in the paper.

Model selection Dropout BNN vs. GPs

The ELBO is the correct objective for automated model selection

The hidden layers of a Deep Conv GP are multi-output GPs $\mathbf{f}_0(\mathbf{x}) = [g_0(\mathbf{x}^{[p]})]_p$ with $\operatorname{Cov}([\mathbf{f}_0(\mathbf{x})]_p, [\mathbf{f}_0(\mathbf{x})]_{p'}) = k_{g_0}(\mathbf{x}^{[p]}, \mathbf{x}^{[p']})$

Experiment

		MNIST		CIFAR-10	
depth	metric	Conv	TICK	Conv	TICK
1	Error (%)	1.87	1.19	41.06	37.10
	NLPD	0.06	0.04	1.17	1.08
	neg. ELBO (×10 ³)	8.29	5.83	65.72	63.51
2	Error (%)	0.96	0.67	28.60	25.59
	NLPD	0.04	0.02	0.84	0.75
	neg. ELBO (×10 ³)	5.37	4.25	52.81	48.31
3	Error (%)	0.93	0.64	25.33	23.83
	NLPD	0.03	0.02	0.74	0.69
	neg. ELBO (×10 ³)	5.045	4.19	49.38	47.53

Software

A Framework for Interdomain and Multioutput Gaussian Processes

 $\begin{array}{ccc} {\rm Mark \ van \ der \ Wilk^1 \quad Vincent \ Dutordoir^2 \quad ST \ John^2 \quad Artem \ Artemev^2} \\ {\rm Vincent \ Adam^2 \quad James \ Hensman^2} \end{array}$

https://arxiv.org/abs/2003.01115.

Final remarks & Conclusion

• The importance of thinking about the modelling assumptions made in the prior.

- DCGP are extremely promising in terms of uncertainty estimation and in the use of marginal likelihood approximations for hyperparameter learning.
- DCGP as correlated multi-output GPs enables efficient implementation in our general-purpose open-sourced framework (part of https://www.gpflow.org/).

Reach out to have a chat if you want to know more!