

Neural Diffusion Processes

Generative Modelling and Uncertainty Quantification

Copenhagen – 2022

Vincent Dutordoir

Work in progress. V1 on <u>Arxiv</u>.

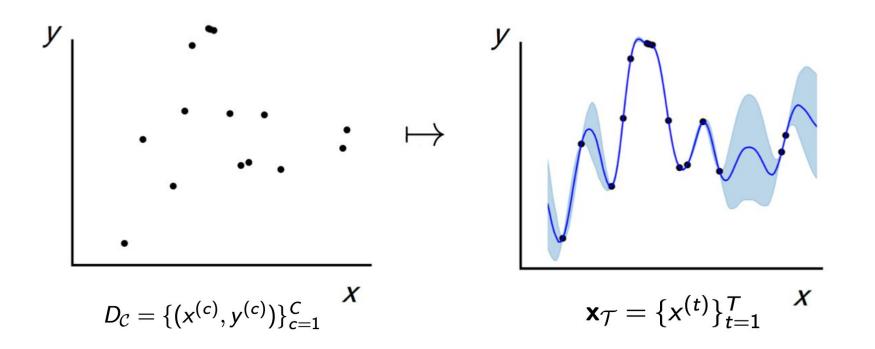
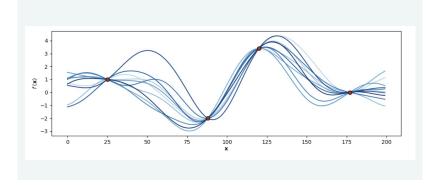
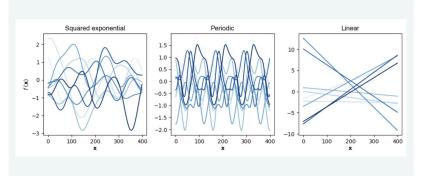


Illustration: Dubois et al. Neural Process Family. <u>Blogpost</u>. 2020

Gaussian Processes Regression



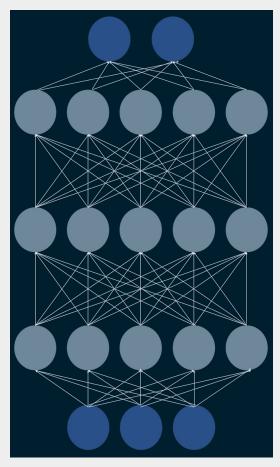


Gaussianity

A priori modelling decisions, such as kernels and, hyper-parameters.

Vision

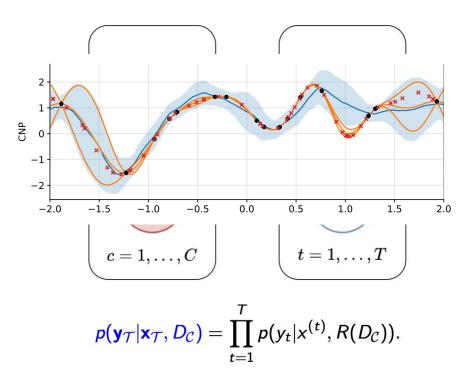
- 1. Amortize Bayesian inference using a large neural network.
- 2. The network 'eats' the entire dataset.
- 3. Train in a *meta-learning* fashion on many datasets. We have **infinite** amount of synthetic datasets available using GPs.
- 4. Potentially fine-tune on specific tasks.



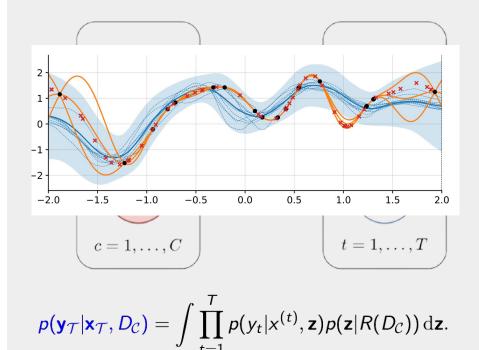
 $D_{\mathcal{C}} = \{(x^{(c)}, y^{(c)})\}_{c=1}^{C}$

Neural Processes – Garnelo et al. 2018

Conditional Neural Processes



Latent Neural Processes



Graphical models: Dubois et al. 2020

"Deep learning has landed straight in our backyard"

– Fergus Simpson

Diffusion Models

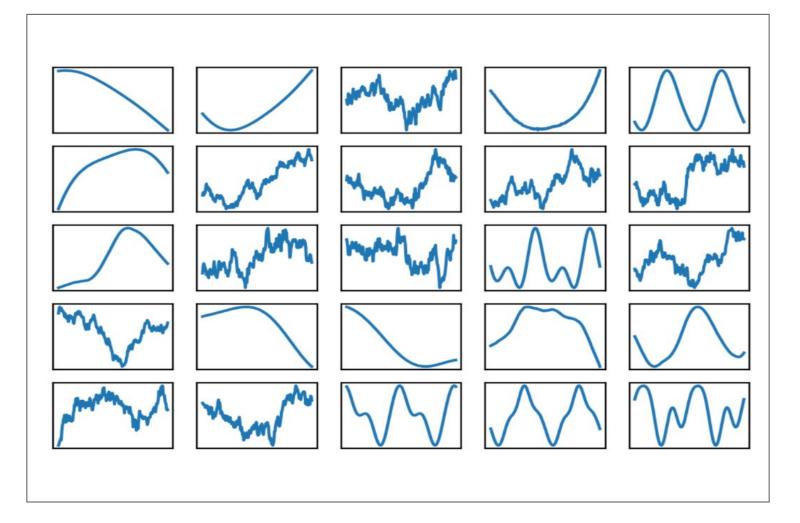
Source: Arno Solin's 3-year-old daughter using <u>Stable Diffusion</u>.

Diffusion Models

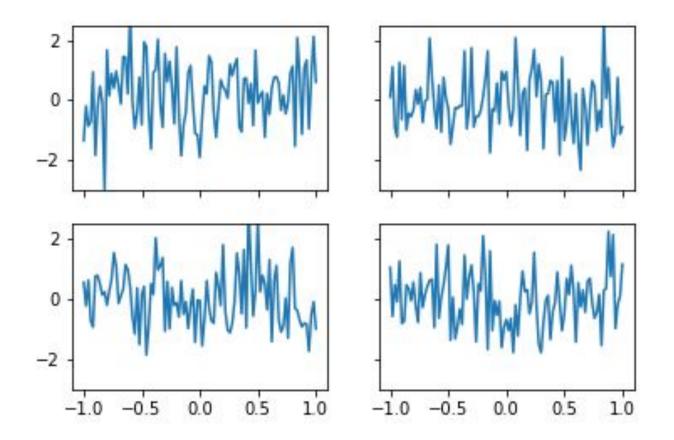
A dragon fruit wearing karate belt in the snow.

A small cactus wearing a straw hat and neon sunglasses in the Sahara desert.

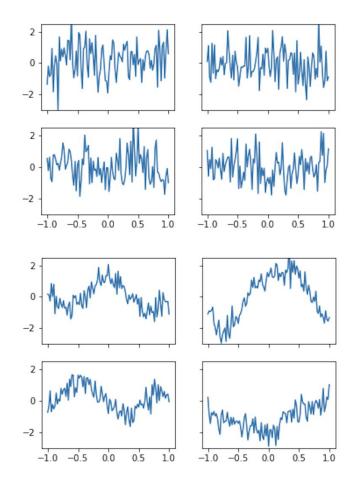
A photo of a Corgi dog riding a bike in Times Square. It is wearing sunglasses and a beach hat.

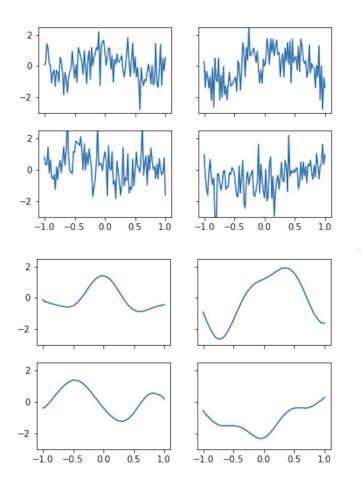


Proof-of-Concept Experiment



Proof-of-Concept Experiment



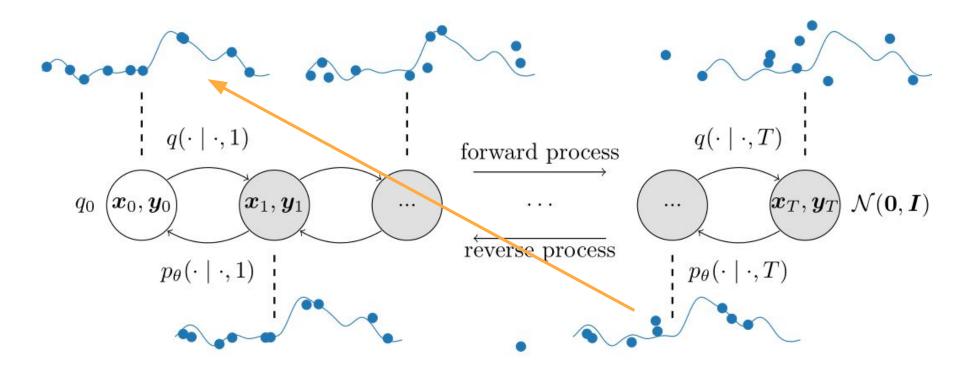


11

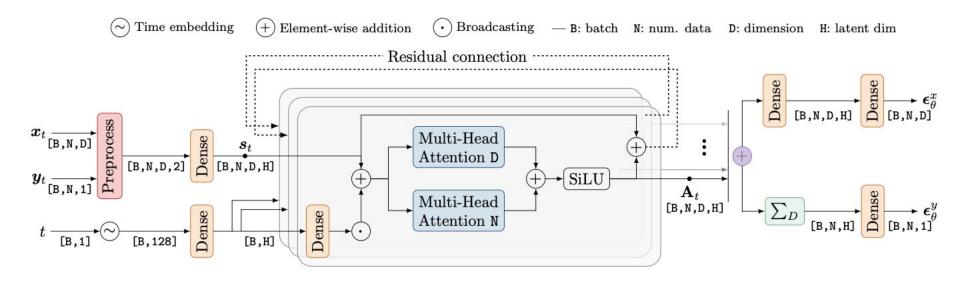
Difficulties of stochastic processes

- 1. We require samples that can be evaluated at arbitrary locations in the input domain.
- 2. **Exchangeability**: the joint probability distribution does not change when the order of function evaluations is altered.
- 3. (Marginal) Consistency $p(f_1) = \int p(f_1, f_2) df_2$.

Diffusion models for stochastic processes

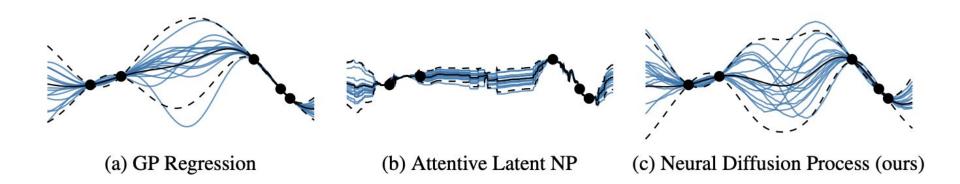


NDP's Noise model

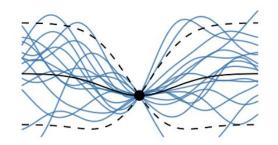


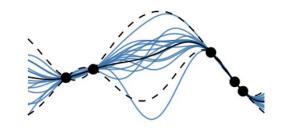
- Equivariant to the dataset ordering (N)
- Invariant to the feature ordering (D)

Conditional Sampling



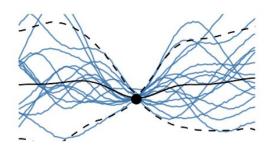
We use a technique from image inpainting to create a conditional sample which is consistent with the context dataset and coherent among itself.



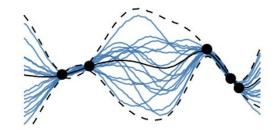


(a) GP Regression



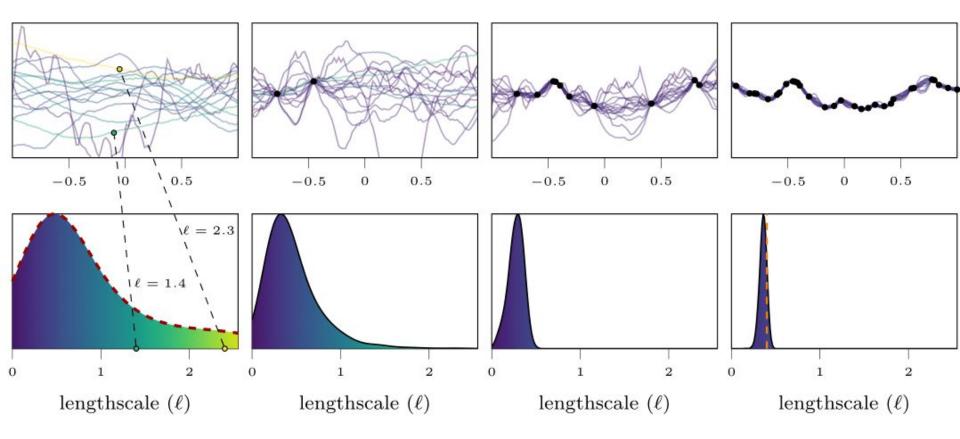


(b) Attentive Latent Neural Process

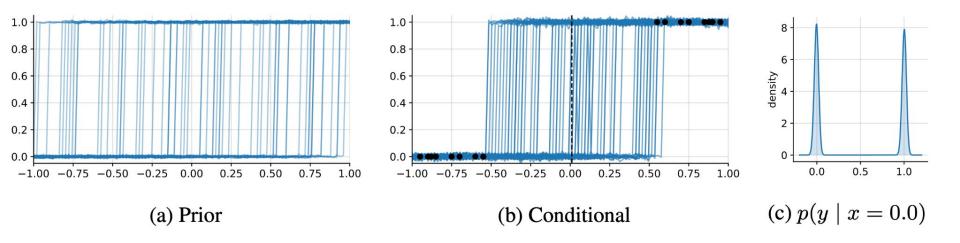


(c) Neural Diffusion Process (ours)

Hyperparameter Marginalization

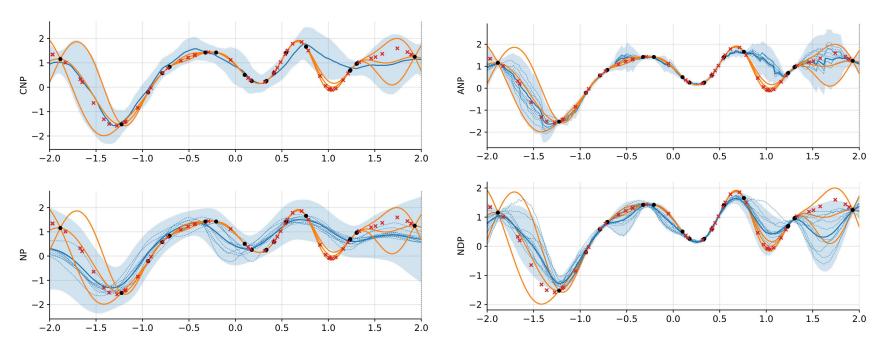


Non-Gaussian Marginals

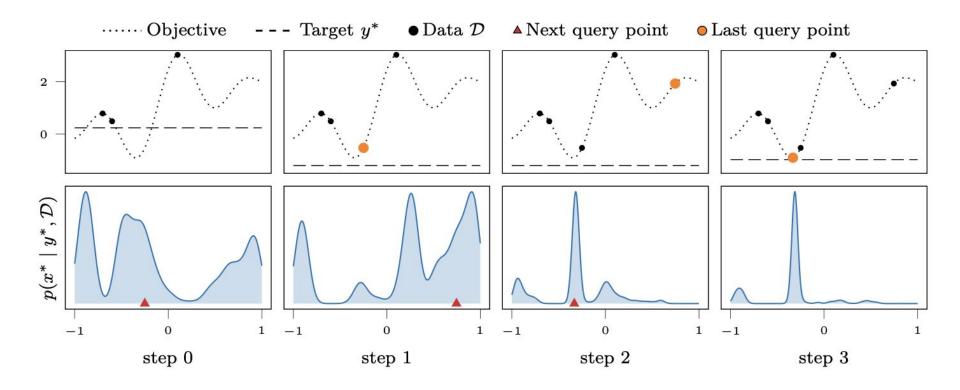


Regression

	Squared Exponential			Matérn		
	$D_x = 1$	$D_x = 2$	$D_x = 3$	$D_x = 1$	$D_x = 2$	$D_x = 3$
NDP	-0.38 ± 0.05	1.01±0.03	1.20±0.01	0.13 ± 0.05	1.15 ± 0.02	1.19±0.01
ANP	$0.29 {\pm} 0.10$	1.05 ± 0.06	1.25 ± 0.03	$0.60 {\pm} 0.07$	1.14 ± 0.05	1.29 ± 0.02
NP	0.67 ± 0.06	1.23 ± 0.04	$1.35 {\pm} 0.02$	$0.84 {\pm} 0.04$	$1.26 {\pm} 0.03$	$1.36 {\pm} 0.01$
CNP	0.77 ± 0.09	$1.26 {\pm} 0.05$	$1.35 {\pm} 0.02$	$0.91 {\pm} 0.07$	$1.30{\pm}0.04$	$1.37 {\pm} 0.02$
trivial	$1.41{\pm}0.03$	$1.42 {\pm} 0.02$	$1.45 {\pm} 0.02$	$1.43 {\pm} 0.02$	$1.43 {\pm} 0.02$	$1.45 {\pm} 0.02$



Global Optimisation



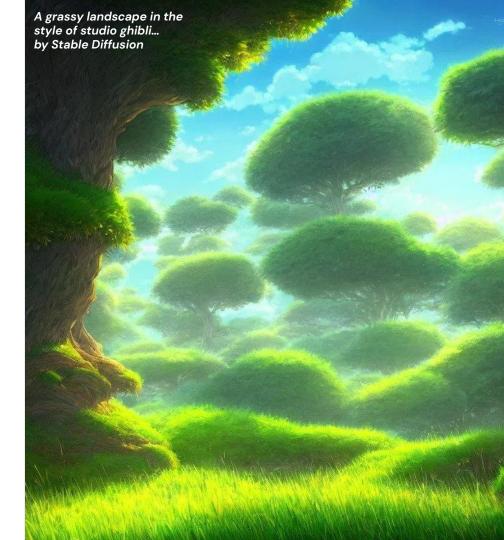
Vision

Instantaneous Bayesian inference.

- No need to train a new 'model' (GP or Neural Network).
- Amortized training once. Inference becomes a simple forward pass.

Next Steps

- Larger datasets. Sparse attention? Work in Hz domain?
- Faster sampling
- Accurate likelihood estimations
- Noise model? p(y | f) = N(y | f, 1e-6)?

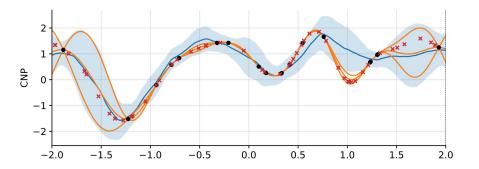


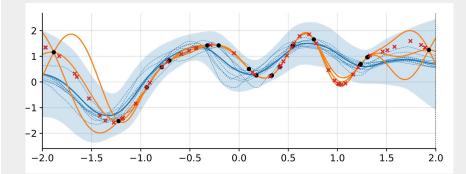
Thank you for your attention.

Neural Processes – Garnelo et al. 2018

Conditional Neural Processes

Latent Neural Processes





$$p(\mathbf{y}_{\mathcal{T}}|\mathbf{x}_{\mathcal{T}}, D_{\mathcal{C}}) = \prod_{t=1}^{T} p(y_t|x^{(t)}, R(D_{\mathcal{C}})).$$

$$p(\mathbf{y}_{\mathcal{T}}|\mathbf{x}_{\mathcal{T}}, D_{\mathcal{C}}) = \int \prod_{t=1}^{T} p(y_t|x^{(t)}, \mathbf{z}) p(\mathbf{z}|R(D_{\mathcal{C}})) \, \mathrm{d}\mathbf{z}.$$

Graphical models: Dubois et al. 2020

23